Importance of the Active Site "Canopy" Residues in an O2-Tolerant [NiFe]-Hydrogenase.

نویسندگان

  • Emily J Brooke
  • Rhiannon M Evans
  • Shams T A Islam
  • Gerri M Roberts
  • Sara A M Wehlin
  • Stephen B Carr
  • Simon E V Phillips
  • Fraser A Armstrong
چکیده

The active site of Hyd-1, an oxygen-tolerant membrane-bound [NiFe]-hydrogenase from Escherichia coli, contains four highly conserved residues that form a "canopy" above the bimetallic center, closest to the site at which exogenous agents CO and O2 interact, substrate H2 binds, and a hydrido intermediate is stabilized. Genetic modification of the Hyd-1 canopy has allowed the first systematic and detailed kinetic and structural investigation of the influence of the immediate outer coordination shell on H2 activation. The central canopy residue, arginine 509, suspends a guanidine/guanidinium side chain at close range above the open coordination site lying between the Ni and Fe atoms (N-metal distance of 4.4 Å): its replacement with lysine lowers the H2 oxidation rate by nearly 2 orders of magnitude and markedly decreases the H2/D2 kinetic isotope effect. Importantly, this collapse in rate constant can now be ascribed to a very unfavorable activation entropy (easily overriding the more favorable activation enthalpy of the R509K variant). The second most important canopy residue for H2 oxidation is aspartate 118, which forms a salt bridge to the arginine 509 headgroup: its mutation to alanine greatly decreases the H2 oxidation efficiency, observed as a 10-fold increase in the potential-dependent Michaelis constant. Mutations of aspartate 574 (also salt-bridged to R509) to asparagine and proline 508 to alanine have much smaller effects on kinetic properties. None of the mutations significantly increase sensitivity to CO, but neutralizing the expected negative charges from D118 and D574 decreases O2 tolerance by stabilizing the oxidized resting NiIII-OH state ("Ni-B"). An extensive model of the catalytic importance of residues close to the active site now emerges, whereby a conserved gas channel culminates in the arginine headgroup suspended above the Ni and Fe.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How oxygen reacts with oxygen-tolerant respiratory [NiFe]-hydrogenases.

An oxygen-tolerant respiratory [NiFe]-hydrogenase is proven to be a four-electron hydrogen/oxygen oxidoreductase, catalyzing the reaction 2 H2 + O2 = 2 H2O, equivalent to hydrogen combustion, over a sustained period without inactivating. At least 86% of the H2O produced by Escherichia coli hydrogenase-1 exposed to a mixture of 90% H2 and 10% O2 is accounted for by a direct four-electron pathway...

متن کامل

Insights into the structure of the active site of the O2-tolerant membrane bound [NiFe] hydrogenase of R. eutropha H16 by molecular modelling.

Structural models for the Ni-B state of the wild-type and C81S protein variant of the membrane-bound [NiFe] hydrogenase from Ralstonia eutropha H16 were derived by applying the homology model technique combined with molecular simulations and a hybrid quantum mechanical/molecular mechanical approach. The active site structure was assessed by comparing calculated and experimental IR spectra, conf...

متن کامل

Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenase

[NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha, is able to overcome aerobic inactivat...

متن کامل

Cloning and sequencing of a [NiFe]

A hydrogenase operon was cloned from chromosomal DNA isolated from Desdfovibrb vulgaris Miyazaki F with the use of probes derived from the genes encoding [NiFe] hydrogenase from Desulfovibrio vulgaris Hildenborough. The nucleic acid sequence of the cloned DNA indicates this hydrogenase to be a two-subunit enzyme: the gene for the small subunit (267 residues; molecular mass = 28763 Da) precedes ...

متن کامل

Discovery of Dark pH-Dependent H+ Migration in a [NiFe]-Hydrogenase and Its Mechanistic Relevance: Mobilizing the Hydrido Ligand of the Ni-C Intermediate

Despite extensive studies on [NiFe]-hydrogenases, the mechanism by which these enzymes produce and activate H2 so efficiently remains unclear. A well-known EPR-active state produced under H2 and known as Ni-C is assigned as a Ni(III)-Fe(II) species with a hydrido ligand in the bridging position between the two metals. It has long been known that low-temperature photolysis of Ni-C yields distinc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 56 1  شماره 

صفحات  -

تاریخ انتشار 2017